skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Georgiadi, Aleksandr G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Changes in river runoff resources, volumes of water intake from surface water sources, and discharge of wastewater into them under contemporary global warming in the basins of the Volga–Kama and Angara–Yenisei reservoirs were analyzed by comparison with the base period, characterized by colder climatic conditions and the largest volumes of water intake and wastewater discharge. The water stress index (WSI) and the index of reciprocal dilution of polluted wastewater (RDI) were examined to reveal features of the change in the water-industry load on river runoff resources in reservoir basins during the period of contemporary global warming (compared to the previous base period) as a result of climate change combined with changes in the volumes of water intake and discharge of polluted wastewater. Both indices were calculated relative to the annual free flow for years of average river flow and the flow of low-water years. The dilution factor was estimated relative to the annual total flow. 1. The basins of the Volga–Kama reservoirs are characterized by a higher level of water-industry load, which is especially noticeable in the significantly lower RDI. 2. When calculating the dilution factor relative to the annual total flow, the level of water-industry load turns out to be much lower both in the base period and in the period of contemporary global warming. 3. At the same time, under global warming conditions, the dilution level of polluted wastewater in the basins of all reservoirs exceeds the minimum required level. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. Long-term series of annual and seasonal water flow and major ions in the Pechora River were analyzed. Long-term phases of increased and decreased water flow were identified, ranging in duration from 11 to 49 years, and the major characteristics of these phases were determined. Changes in the sequence and boundaries of contrast phases in the annual and snowmelt spring–summer flood runoff were found to coincide. The difference between the mean seasonal water runoff during the phases of increased and decreased flow varied from 12 to 41%. The ion flow values of contrast phases typically differed by 9 to 36%, which is less than for water flow. This is due to the inverse dependence between ion concentrations and water discharge. Such peculiar negative feedback stabilizes the rates of chemical denudation in the river catchments to some extent and, thus, the discharge of major ions into seas, even during significant variations in water. 
    more » « less
  3. Lake Baikal is the largest freshwater lake in the world, accounting for about 20% of the world’s fresh surface water. The lake’s outflow to the ocean occurs only via the Angara River, which has several hydroelectric power plants (HPPs) along its watercourse. The first such HPP, Irkutsk HPP, was built in 1956 and is located 60 km from the Angara River’s source. After two years, the backwater from this HPP expanded to the lake shores and began raising the Baikal Lake level. Currently, there is a dynamic balance between the new lake level, the lake inflow from its tributaries, and the Angara River discharge through the Irkutsk HPP. However, both the Angara River discharge and the Baikal Lake level were distorted by the HPP construction. Thus, to understand the changes to the lake basin over the past century, we first needed to estimate naturalized lake levels that would be if no HPP was ever built. This was an important task that allowed (a) the actual impact of global changes on the regional hydrological processes to be estimated and (b) better management of the HPP itself to be provided through future changes. With these objectives in mind, we accumulated multi-year data on the observed levels of Lake Baikal, and components of its water budget (discharge of main tributaries and the Angara River, precipitation, and evaporation). Thereafter, we assessed the temporal patterns and degree of coupling of multi-year and intra-annual changes in the lake’s monthly, seasonal, and annual characteristics. The reconstruction of the average monthly levels of Lake Baikal and the Angara River water discharge after the construction of the Irkutsk HPP was based on the relationship of the fluctuations with the components of the Lake water budget before regulation. As a result, 123-year time series of “conditionally natural” levels of Lake Baikal and the Angara River discharge were reconstructed and statistically analyzed. Our results indicated high inertia in the fluctuations in the lake level. Additionally, we found a century-long tendency of increases in the lake level of about 15 cm per 100 years, and we quantified the low-frequency changes in Lake Baikal’s water levels, the discharge of the Angara River, and the main lake tributaries. An assessment of the impact of the Irkutsk HPP on the multi-year and intra-annual changes in the Lake Baikal water level and the Angara River discharge showed that the restrictions on the discharge through the HPP and the legislative limitations of the Lake Baikal level regime have considerably limited the fluctuations in the lake level. These fluctuations can lead to regulation violations and adverse regimes during low-water or high-water periods. 
    more » « less
  4. In the rivers of the central part of the East European Plain (the Volga at Staritsa, the Oka at Kaluga, and the Don at Stanitsa Kazanskaya), long phases (10–15 years or more) of increased/decreased annual and seasonal runoff have occurred, as well as differences in the frequencies of extremely low flow conditions from the late 19th century to 2020. Phase boundaries were identified by cumulative deviation curves and statistical homogeneity. The frequencies of specific water flow values were estimated using the empirical curves of the exceedance probability of annual and seasonal water flows based on their long-term time series. In the century-long changes of rivers considered, two long contrasting phases were revealed. These phases are characterized by increased and decreased runoff of hydrological seasons. Near simultaneously, a phase of increased runoff was first observed for the freshet season. On the contrary, phases of decreased runoff were first observed for low-water seasons. The runoff phases differ significantly in duration and differences in flow. Significant differences were revealed in the frequency of low-water years for a low runoff with an exceedance probability above or equal to 75% and above or equal to 95%. 
    more » « less